BMS and the Fixed Effects Estimator - A Tutorial

Martin Feldkircher*

This version: June 2011

Abstract

This tutorial should illustrate how to use Bayesian Model Averaging (BMA) in R with panel data.

1 Introduction

Methods for estimating econometric models with panel data have been frequently discussed in the literature (see eg Mundlak, 1978). Two estimators seem to resurface most often: the fixed effects estimator (FE) and the random effects estimator (RE). Both have their separate virtues and underlying assumptions (for an exposition see Bartels, 2008). Since the FE estimator can be easily cast into the linear regression framework that is used for BMS it will be our focus in this tutorial. For an application of Bayesian model averaging employing the RE estimator please refer to Moral-Benito (2011). Furthermore, a great deal of the literature seems to pivot around the question of how to calculate standard errors (Bartels, 2008). At the current stage, we abstract from the calculation of so-called *clustered* standard errors since we stay in a pure Bayesian framework in BMS (and standard errors are a classical concept).

For the purpose of illustration we will use the data put forward in Moral-Benito (2011) and made publicly available at Moralbenito.com. The data contains K = 35 variables (including the dependent variable, the growth rate of per capita GDP) for N = 73 countries and for the period 1960-2000. The appendix lists the variables together with a short description. The dependent variable, GDP growth, is calculated for five year averages resulting into eight observations per country. Moral-Benito (2011) argues in favor of calculating averages of flow variables, while stock variables have been measured at the first year of each five-year period. The data can be downloaded here http://www.moralbenito.com/research.htm ('download data for the paper Determinants of Economic Growth: A Bayesian Panel Data Approach).

> library(BMS)

After having started R and loaded the BMS we can read in the data file:

For that purpose I have simply saved the 'Dataset.xls' file as a 'Dataset.csv' file and have replaced all missing values by 'NA' in excel. You can also download the data here 'panel-Dat.rda'.

^{*} mart in.feld kircher @gzpace.net.

	GI	RW_I	PWT	GDP_	_PWT		POF	2		PGRW]	IPR		(JPEM
DZA_1960	0.06	1877	711	8.254	1050	1090	9.29	9 0.0	0164	4121	59	.158	331	1.2	944	1342
DZA_1965	0.05	1521	103	8.315	5927	1196	53.09	9 0.0	0305	3423	62	.972	262	0.8	55	7407
DZA_1970	-0.063	3495	568	8.367	7448	1393	81.85	5 0.0	0291	7826	78	.941	137	0.9	270	0065
DZA_1975	0.232	2158	350	8.303	3953	1614	10.25	5 0.0)308	7119	105	.676	677	1.1	86	7272
DZA_1980	0.074	4891	113	8.536	5111	1886	61.62	2 0.0)324	9203	98	.748	344	1.0	174	1890
DZA_1985	0.01	5574	114	8.61	1002	2218	32.25	5 0.0)280	4192	101	.399	928	0.7	784	4194
		CSI	ł	(GSH		IS	SH	L	BF		LEX		P	DE	
DZA_1960	0.5099	9434	1 0.	21666	522 ().148	32126	50 0.	. 297	12 4	8.32	439	4.5	5976	72	
DZA_1965	0.5172	2348	30.	16527	750 (0.095	50713	38 0.	.271	92 5	1.42	439	5.0	0060	04	
DZA_1970	0.5728	3414	1 0.	17427	702 (0.161	15161	L4 O.	. 257	38 5	4.47	561	5.7	7714	11	
DZA_1975	0.7239	9094	1 0.	23143	359 ().253	31752	28 0.	. 258	83 5	7.47	561	6.7	7253	35	
DZA_1980	0.762	1881	ι ο.	25474	158 C).234	15995	53 0.	.264	04 6	0.47	561	7.8	3384	58	
DZA_1985	0.6667	7698	30.	20935	508 ().170)954()2 0.	. 274	89 6	5.71	951	9.1	1861	41	
	URI	BP 1	IWTR	, LND	ADIS	3	TAR]	ГРОР		LAR	, OPI	EI I	ENDF	S	JC
DZA_1960	0.3044	40	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2		1
DZA_1965	0.3762	28	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2	2	1
DZA_1970	0.3950	00	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2		1
DZA_1975	0.4033	30	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2		1
DZA_1980	0.4354	42	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2		1
DZA_1985	0.4796	69	5	0	1675	5 0.1	618	0.12	2865	238	1740)	0	2		1
	WAR CI	LI H	EU S	AFR I	LATM	EAS		MA	AL.		P15		F	P65	I	PED
DZA_1960	1	0	0	0	0	0	0.76	6772	22 0	.437	300	0.03	3851	185	0.8	320
DZA_1965	1	0	0	0	0	0	0.76	6772	22 0	.459	700	0.03	3287	776	0.5	515
DZA_1970	1	0	0	0	0	0	0.90)4409	99 0	.483	700	0.04	1132	211	0.0	371
DZA_1975	1	0	0	0	0	0	0.90)4409	99 0	.474	000	0.04	1182	279	0.8	375
DZA_1980	1	0	0	0	0	0	0.00	0325	54 0	.464	900	0.03	3932	276	1.2	235
DZA_1985	1	0	0	0	0	0	0.00	0325	54 0	.454	239	0.03	3942	254	1.6	307
	SED	PR	CL													
DZA_1960	0.139	6	6													
DZA_1965	0.118	6	6													
DZA_1970	0.141	6	6													
DZA_1975	0.189	6	6													
DZA_1980	0.280	6	6													
DZA_1985	0.458	6	6													

The rownames of the data are a combination of the country code and the year of the observation. The data is provided in a **data frame** consisting of stacked observations per column. That is, the first column containing the dependent variable consists

$$Y_1 = (y_{1,1}, y_{1,2}, \dots, y_{1,T=8}, \dots, y_{N,1}, y_{N,2}, \dots, y_{N,T})$$

This is also the format we can use later on when calling the bms function.

We will use two approaches to estimate a fixed effects (FE) panel (country / time fixed effects). The first approach makes use of the Frisch-Waugh-Lovell theorem (see eg Lovell, 2008) boiling down to demeaning the data accordingly. That is, in the case of country fixed effects, subtract from each observation (dependent and independent variable) the within

country mean. For the case of time fixed effects, subtract from each observation the mean across countries per time period. We will start with the country fixed effects first.

For that purpose we will have to re-shape the data frame and put it into the form of a three dimensional array $(T \times K \times N)$. That can be achieved with the function panel_unstack. Since bms uses data in its stacked form, we have to make use of panel_stack as well. Both functions are not part of the BMS library and thus have to be copy and pasted into your R console by yourself:

```
> panel_unstack = function(stackeddata, tstep = NULL) {
      bigT = nrow(stackeddata)
+
      K = ncol(stackeddata)
+
      if (is.null(tstep))
+
          tstep = bigT
+
      X1 = aperm(array(as.vector(t(as.matrix(stackeddata))),
+
          dim = c(K, tstep, bigT/tstep)), perm = c(2, 1,
+
          3))
+
      try(dimnames(X1)[[1]] <- unique(sapply(strsplit(rownames(stackeddata),</pre>
+
           "_"), function(x) x[[2]])), silent = TRUE)
+
      try(dimnames(X1)[[2]] <- colnames(stackeddata), silent = TRUE)</pre>
+
      try(dimnames(X1)[[3]] <- unique(sapply(strsplit(rownames(stackeddata),</pre>
+
+
           "_"), function(x) x[[1]])), silent = TRUE)
      return(X1)
+
+ }
> panel_stack = function(array3d) {
      x1 = apply(array3d, 2, rbind)
+
      try(rownames(x1) <- as.vector(sapply(dimnames(array3d)[[3]],</pre>
+
          FUN = function(x) paste(x, dimnames(array3d)[[1]],
+
              sep = "_"))), silent = TRUE)
+
      return(as.data.frame(x1))
+
+ }
```

We can now easily transform the data from its stacked form into the three-dimensional array via:

```
> dat.array = panel_unstack(panelDat, tstep = 8)
```

where we have set tstep=8 since we have eight time periods per country. The advantages of the three-dimensional array are that we can easily access each dimension of the data:

```
> dat.array[, , "ZWE"]
> dat.array["1965", , ]
> dat.array[, "GSH", ]
```

2 Fixed Effects Estimation by Demeaning the Data

The function demean (again not part of the BMS library, so copy and paste the following lines into your R console) demeans the data to estimate individual (eg country), time and

individual and time fixed effects. It takes as argument the three dimensional data array we have created above (dat.array) and via margin we can specify over which dimension we want to demean the data (country / time).

```
> demean = function(x, margin) {
+    if (!is.array(x))
+        stop("x must be an array/matrix")
+    otherdims = (1:length(dim(x)))[-margin]
+    sweep(x, otherdims, apply(x, otherdims, mean))
+ }
```

Demeaning is now easily accomplished by:

```
> timeDat = panel_stack(demean(dat.array, 3))
> countryDat = panel_stack(demean(dat.array, 1))
```

where we have used panel_stack to re-transform the demeaned data into its stacked form that can be passed to the bms function.

Since in the data frame only the first 12 explanatory variable show variation over time, we will restrict estimation to these variables only.

```
> modelCd = bms(countryDat[, 1:13], user.int = F)
> modelTd = bms(timeDat[, 1:13], user.int = F)
```

We will briefly discuss the results in the next section (see Table 1 and Table 2). Note that demeaning the data yields the same posterior estimates for the coefficients as with incorporating the FE directly, the approach we opt for in the next section. However, the posterior variance for the coefficient estimates is not identical (though very similar). Also note that demeaning does not save you from the degrees of freedom problem when incorporating the large set of fixed effects by a set of dummy variables. For an application using BMA with country FEs see for example Crespo Cuaresma et al. (2009).

3 Fixed Effects Estimation with Dummy Variables

We will now turn to the second possibility of estimating FEs, which is the dummy variable approach. The advantage of the dummy variable approach is also that it yields estimates for the FEs which can be important for some applications. For the dummy approach we will make use of the new BMS feature of holding variables constant (not sampling) them by the bms argument fixed.reg. Please make sure that you have installed BMS \geq version 0.3. We start now with creating the country dummies:

```
> bigT = nrow(panelDat)
> tstep = 8
> countryDummies = kronecker(diag(bigT/tstep), rep(1, tstep))
> colnames(countryDummies) = dimnames(dat.array)[[3]]
> countryDummies = countryDummies[, -1]
```

In a same fashion we can easily create a set of time dummies:

```
> timeDummies = matrix(diag(tstep), bigT, tstep, byrow = T)
> colnames(timeDummies) = dimnames(dat.array)[[1]]
> timeDummies = timeDummies[, -1]
> modelTdummy = bms(cbind(panelDat[, 1:13], timeDummies),
+ fixed.reg = colnames(timeDummies), user.int = F)
```

Running the two regressions (for the first 13 elements of the demeaned data frame only):

```
> modelCdummy = bms(cbind(panelDat[, 1:13], countryDummies),
+ fixed.reg = colnames(countryDummies), user.int = F)
> modelTdummy = bms(cbind(panelDat[, 1:13], timeDummies),
+ fixed.reg = colnames(timeDummies), user.int = F)
```

should yield the same results as with demeaning. Type coef(modelCdummy) / coef(modelTdummy) to get the results in R. These are summarized in the Table below:

	PIP	Post Mean	Post SD	PIP	Post Mean	Post SD
GDP_PWT	1.00	-0.24	0.02	1.00	-0.24	0.02
POP	1.00	0.00	0.00	1.00	0.00	0.00
PGRW	0.29	-0.53	0.99	0.29	-0.53	0.99
IPR	0.33	-0.00	0.00	0.33	-0.00	0.00
OPEM	1.00	0.16	0.03	1.00	0.16	0.03
CSH	1.00	-0.30	0.07	1.00	-0.30	0.07
GSH	0.98	-0.46	0.14	0.98	-0.46	0.14
ISH	0.52	0.13	0.15	0.52	0.13	0.15
LBF	0.51	0.28	0.32	0.51	0.28	0.32
LEX	0.13	0.00	0.00	0.13	0.00	0.00
PDE	0.07	-0.00	0.00	0.07	-0.00	0.00
URBP	0.08	-0.01	0.04	0.08	-0.01	0.04

Table 1: Estimation of country fixed effects: Left panel based on demeaning the data, right panel on the dummy variable estimation approach.

As one can see the results are very similar to each other. Since we have used 'full enumeration' no stochastic variability should be expected for the two approaches. However, when using large data sets and thus the MCMC sampler in turn, please bear in mind that there might be some stochastic variation of results when running differen bms chains. Posterior coefficients for the model employing country fixed effects are to be interpreted with respect to the within variation: A positive coefficient on the variable measuring the country's openness (OPEM) means that if openness increases within a country GDP growth is increasing. On the other hand, time fixed effects in the particular example look at the between variation of the data. That is, if openness across countries (at once) increases, does this affect GDP growth? From Table 2 we see that this effect is smaller compared to that for the within transformed data.

	PIP	Post Mean	Post SD	PIP	Post Mean	Post SD
GDP_PWT	1.00	-0.07	0.01	1.00	-0.07	0.01
POP	0.43	0.00	0.00	0.43	0.00	0.00
PGRW	0.99	-2.54	0.65	0.99	-2.54	0.65
IPR	0.77	-0.00	0.00	0.77	-0.00	0.00
OPEM	0.38	0.01	0.02	0.38	0.01	0.02
CSH	0.10	-0.00	0.02	0.10	-0.00	0.02
GSH	0.14	-0.01	0.04	0.14	-0.01	0.04
ISH	0.86	0.21	0.11	0.86	0.21	0.11
LBF	0.06	0.00	0.03	0.06	0.00	0.03
LEX	1.00	0.01	0.00	1.00	0.01	0.00
PDE	0.35	0.00	0.00	0.35	0.00	0.00
URBP	0.10	-0.00	0.02	0.10	-0.00	0.02

Table 2: Estimation of time fixed effects: Left panel based on demeaning the data, right panel on the dummy variable estimation approach.

References

- [1] Bartels, Brandon (2008). Beyond 'Fixed versus Random Effects': A Framework for Improving Substantive and Statsitcal Analysis of Panel, Time-Series Cross-Sectional, and Multilevel Data. *Mimeo, Stony Brook University, New York.*
- [2] Crespo Cuaresma, J. and Doppelhofer, G. and Feldkircher, M. 2009: The Determinants of Economic Growth in European Regions. *CESifo Working Paper Series, No. 2519.*
- [3] Lovell, M., 2008. A Simple Proof of the FWL (Frisch, Waugh, Lovell) Theorem. *Journal of Economic Education.*
- [4] Moral Benito, Enrique (2011). Determinants of Economic Growth: A Bayesian Panel Data Approach. *The Review of Economics and Statistics, forthcoming.*
- [5] Mundlak, Yair, 1978. On the Pooling of Time Series and Cross Section Data. Econometrica, Vol. 46, p. 69-85.

4 Appendix

GRW_PWT	Dependent variable (source: PWT 6.2)
CDD DWT	Growth of per capita GDP over 5-year periods (2000 US dollars at PPP)
GDP_PW1	log Initial GDP (PWI 0.2)(IN) Logarithm of initial real GDP per capita (2000 US dollars at PPP)
POP	Population (source PWT 6.2)(IN)
	Population in thousands of people
PGRW	Population Growth (source PWT 6.2)(AV)
IDD	Average annual growth rate of population
IPR	Average investment price level
OPEM	Opennes measure (source PWT 6.2)(AV)
01 1	Export plus imports as a share of GDP
CSH	Consumption Share (source PWT 6.2)(AV)
0.077	Consumption as a share of GDP
GSH	Government Share (source PWT 6.2)(AV)
ISH	Government consumption as a share of GDP Investment Share (source PWT 6.2) (AV)
1511	Investment is a share of GDP
LBF	Labor Force (source PWT 6.2)(IN)
	Ratio of workers to population
LEX	Life Expectancy (source WDI 2005)(IN)
DDE	Life expectancy at birth
PDE	Population Density (source WDI 2005)(IN) Population divided by land area
URBP	Urban Population (source WDI 2005)(IN)
OILDI	Fraction of population living in urban areas
NWTR	Navigable Water (source Gallup et. al)
	Fraction of land area near navigable water
LND	Landlocked Country (source Gallup et. al)
ADIC	Dummy for landlocked countries
ADIS	Air Distance (source Gallup et. al) Logarithm of minimal distance in km from New York Rotterdam, or Tokio
TAR	Tropical Area (source Gallup et. al)
	Fraction of land area in geographical tropics
TPOP	Tropical Population (source Gallup et. al)
	Fraction of population in geographical tropics
LAR	Land Area (source Gallup et. al)
OPEI	Openness Index (source: Sachs and Warner)
01 EI	Index of trade openness from 1 (highest) to 0
INDP	Independence (source Gallup et. al)
	Timing of national independence measure: 0 if before 1914;
000	1 if between 1914 and 1945; 2 if between 1946 and 1989 and 3 if after 1989
SOC	Socialist (source Gallup et. al)
WAR	War Dummy (source: Barro and Lee)
	Dummy for countries that participated in external war between 1960 and 1990
CLI	CLimate (source Gallup et. al)
	Fraction of land area with tropical climate
EU	Europe
SAFR	Sub-Sabaran Africa
5711 10	Dummy for Sub-Sahara African countries
LATM	Latin America
	Dummy for Latin American countries
EAS	East Asia
MAT	Dummy for East Asian countries
MAL	Fraction of population in areas with malaria
P15	Population under 15 (source: Barro and Lee)(IN)
	Fraction of population younger than 15 years
P65	Population over 65 (source: Barro and Lee)(IN)
DDD	Fraction of population older than 65 years
PED	Primary Education (source: Barro and Lee)(IN)
SED	Secondary Education (source: Barro and Lee)(IN)
	Stock of years of secondary education
\mathbf{PR}	Political Rights (source: Freedom House)(IN)
	Index of political rights from 1 (highest) to 7
CL	Civil Liberties (source: Freedom House)(IN)
	Index of civil liberties from 1 (highest) to 7

Table 3: Source: Moralbenito.com. Notes: 1.-(IN) refers to initial value for the 5-year period. 2.-(AV) refers to 5-year average. 3.-Variables without neither (IN) nor (AV) are the same for all the years.