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This file illustrates the computer code to use spatial filtering in the context of Bayesian
Model Averaging (BMA). For more details and in case you use the code please cite Crespo
Cuaresma and Feldkircher (2010). To get the code started you need to install the R-packages
spdep, BMS (Version ≥ 0.2.5) and the add on package spatBMS. For an introduction to BMS

see http://bms.zeugner.eu and the tutorials therein. The following file has been tested
with R.2.11.

1 A Primer to Spatial Filtering and BMA

Consider a cross-sectional regression of the following form:

y = αιN + ρWy + Xk~χk + σε (1)

where y is an N -dimensional column vector of the dependent variable, α is the intercept term,
ιN is an N -dimensional column vector of ones, Xk = (x1 . . .xk) is a matrix whose columns are
stacked data for k explanatory variables and ~χk = (χ1 . . . χk)′ is the k-dimensional parameter
vector corresponding to the variables in Xk. The spatial autocorrelation structure is specified
via a spatial weight matrix W. The coefficient ρ attached to W reflects the degree of spatial
autocorrelation. Equation (1) is in the vein of a parametric spatial model where the spatial
parameter ρ is often interpreted as a spillover parameter.
In this setting, on top of the uncertainty regarding the choice of explanatory variables an
extra degree of uncertainty arises: we do not know the actual nature of the spatial inter-
actions which we model through the spatial autoregressive term in equation (1), that is, if
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we conduct inference conditional on W. Spatial autocorrelation will be observable whenever
the phenomenon under study is a spatial process or omitted variables cause spatial variation
in the residuals (Tiefelsdorf and Griffith, 2007). Note that both arguments typically apply
to economic cross-section data, where economic units interact with each other and omitted
variables decrease the level of confidence in econometric analysis. Since inference from the
SAR model is conditional on the weight matrix W, which has to be exogenously specified,
explicitly accounting for this source of model uncertainty is a natural generalization to un-
certainty in the nature of Xk in the framework of BMA. In most applications there is little
theoretical guidance on which structure to put on the weight matrix rendering its specifica-
tion a serious challenge.

1.1 Spatial Filtering

The spatial filtering literature seeks to remove residual spatial autocorrelation patterns prior
to estimation and is in principle not interested in directly estimating ρ in (1). The approach
put forward by Getis and Griffith (2002) and Tiefelsdorf and Griffith (2007), is based on an
eigenvector decomposition of a transformed W matrix, where the transformation depends on
the underlying spatial model. The eigenvectors {ei} are included as additional explanatory
variables and the regression equation (1) becomes:

y = αιN +
E∑

i=1

γi~ei + Xk~χk + σε, (2)

where each eigenvector ~ei spans one of the spatial dimensions. By introducing the eigen-
vectors into the regression, we explicitly take care of (remaining) spatial patterns in the
residuals. Furthermore spatial commonalities among the covariates in Xk are conditioned
out. This reduces the degree of multicollinearity and further separates spatial effects from
the ’intrinsic’ impact the employed regressors exert on the dependent variable.

1.2 BMA with uncertain spatial effects

From a Bayesian perspective, the problem of obtaining estimates of the parameter associ-
ated with a covariate under uncertainty in both the nature of W and Xk can be handled
in a straightforward manner. Let us assume that we are interested in a particular regres-
sion coefficient, β. Denote the set of potential models by M = {M1
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Z
2K}, where K stands for the number of potential explanatory vari-

ables and Z the number of candidate spatial weighting matrices Wz, z = 1, . . . , Z each with
associated set of eigenvectors Ez. The cardinality of M is therefore 2K × Z. A particular
model, say M z

k , is characterized by its parameter vector θz
k = (α, χk, γz) corresponding to the

intercept term included in all models, the coefficients on the regressors entering the model
and the coefficients on the set of eigenvectors Ez related to Wz. In the BMA framework,
the posterior distribution of β takes now the form of
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p(β|y) =
2K∑
j=1

Z∑
z=1

p(β|M z
j , y)p(M z

j |y) (3)

with y denoting the data and β the coefficient of interest. Inference on β is based on single
inferences under models j = 1, . . . , 2K × Z weighted by their respective posterior model
probabilities, p(M z

j |y), which in turn depend on the corresponding matrix of spatial weights.
For more technical details please see Crespo Cuaresma and Feldkircher (2010).

1.3 An Illustration: The Boston Housing Data

In R we will do spatial filtering with the ’Boston housing data’ which has been originally
published in Harrison and Rubinfeld (1978). The dependent variable (CMEDV) contains the
corrected median value of owner-occupied homes in USD 1000’s for 506 observations. Among
the explanatory variables we have per capita crime (CRIM), the pupil-teacher ratio by town
(PTRATIO), the proportion of owner-occupied units built prior to 1940 (AGE), the proportion
of non-retail business acres per town (INDUS), a variable that is proportional to the share of
Afro Americans per town (B) and a variable reflecting the nitric oxides concentration (NOX)
among others. For more details please see ?dataBoston. We start with loading the data in
R :

> rm(list = ls())

> library(spdep)

> library(spatBMS)

> library(BMS)

> data(dataBoston)

> data(boston.soi)

As in the earlier analyses of these data, we take logarithms of the variables CMEDV, DIS, RAD
and LSTAT and squares of the regressors RM (RM#RM) and NOX (NOX#NOX) to model potential
non-linearities. These transformations have been already carried out and the transformed
variables stored in dataBoston.
We proceed with the construction of several weight matrices. To keep the example simple,
we limit the space of candidate W matrices to five:

� The matrix boston.soi already comes along with the boston data set (W0).

� A perturbation of the boston.soi matrix (W1).

� A second perturbation of the boston.soi matrix (W2).

� A 4 nearest neighbor matrix (KNN4)

� A 6 nearest neighbor matrix (KNN6)
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The first matrix is included in the spdep package and constitutes probably a first order
contiguity matrix. This class of matrices assigns positive (identical) weights to observations
that share a common border. See Anselin (1988) and Crespo Cuaresma and Feldkircher
(2010) for an interpretation of different coding schemes. For the sake of illustration we will
randomly perturb the matrix using the function jitterW_binary which is provided in the
corresponding Sweave file to this pdf.
The peturbation randomly adds / drops N=5 neighborhood relationships of the boston.soi

weight matrix. The function takes as argument a matrix object, thus we have to transform
boston.soi with the function nb2mat into a matrix.

> W0 <- boston.soi

> bostMat = nb2mat(boston.soi, style = "B")

> W1 = jitterW_binary(bostMat, N = 5)

> W1 = mat2listw(W1$Wmat)

> W1 = W1$neighbours

> W2 = jitterW_binary(bostMat, N = 5)

> W2 = mat2listw(W2$Wmat)

> W2 = W2$neighbours

It is necessary to re-transform the perturbed matrices into the nb class since the SpatialFiltering
function we will use later on only allows for objects of this class as inputs. This can
be done with the function mat2listw and extracting the neighborhood object by typing
object$neighbours (in the example W2$neighbours).
Finally we set up two k-nearest neighbor matrices.

> data(boston)

> coords <- coordinates(boston.utm)

> col.knn4 <- knearneigh(coords, k = 4)

> col.knn4 = knn2nb(col.knn4)

> coords <- coordinates(boston.utm)

> col.knn6 <- knearneigh(coords, k = 6)

> col.knn6 = knn2nb(col.knn6)

As stated above we assume the model follows a SAR process. To free the residuals from
spatial correlation we now filter the dependent variable. The SpatialFiltering function
provided in the package spdep will extract the eigenvectors. A linear combination of these
eigenvectors will allow us to separate spatial correlation from the dependent variable by using
the identified eigenvectors as additional regressors in our econometric model.
Depending on the size of your W matrix, spatial filtering can take some while. The function
takes the neighborhood objects we have defined above and the data to be filtered as main
arguments. For more details see ?SpatialFiltering . Note also that we have set ExactEV
to FALSE (quicker) which provides an approximation for our illustration example.

> y = as.data.frame(dataM[, 1, drop = F])

> yFilt.colGal0 = SpatialFiltering(dataM[, 1] ~ 1, ~-1, data = y,

+ nb = W0, style = "W", ExactEV = FALSE)

> yFilt.colGal1 = SpatialFiltering(dataM[, 1] ~ 1, ~-1, data = y,
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+ nb = W1, style = "W", ExactEV = FALSE)

> yFilt.colGal2 = SpatialFiltering(dataM[, 1] ~ 1, ~-1, data = y,

+ nb = W1, style = "W", ExactEV = FALSE)

> yFilt.knn4 = SpatialFiltering(dataM[, 1] ~ 1, ~-1, data = y,

+ nb = col.knn4, style = "W", ExactEV = FALSE)

> yFilt.knn6 = SpatialFiltering(dataM[, 1] ~ 1, ~-1, data = y,

+ nb = col.knn6, style = "W", ExactEV = FALSE)

Finally we collect the eigenvectors in a list.

> WL.boston = list(Col0 = fitted(yFilt.colGal0), Col1 = fitted(yFilt.colGal1),

+ Col2 = fitted(yFilt.colGal1), knn4 = fitted(yFilt.knn4),

+ knn6 = fitted(yFilt.knn6))

Note that you can also access the extracted eigenvectors by typing e.g. yFilt.colGal0$dataset
instead of e.g. fitted(yFilt.colGal0).
Now we can start with the BMA part. All functions and input arguments of the BMS library
are applicable. There are three important exceptions though: First, the empirical Bayes
estimation as well as the hyper-g priors are so far not implemented. Thus you can specify
the g-prior either by using the benchmark priors (Fernandez et al. 2001) or by any numerical
number g > 0. See Feldkircher and Zeugner (2009) for more details on the influence of g on
posterior results. Secondly, the enumeration algorithm (mcmc=enum) is in its current version
not available for spatFilt.bms. Finally, to speed up calculations BMS provides the option
force.full.ols=FALSE, which is not available in spatFilt.bms.
The additional argument WList of the function spatFilt.bms must be a list object with
length corresponding to the number of weight matrices you use length(WList) must be
greater than 1, that is you have to submit at least two sets of eigenvectors in order to use
spatial filtering in the context of BMA. Each element of the list contains a matrix with the
extracted eigenvectors, where the matrices do not have to have the same column dimension.
In the example we have collected the eigenvectors in the object WL.boston. To have a
quick look at the boston data set we run a short BMA chain with 1 million posterior draws
(iter=1e06) after discarding the first 100,000 draws (burn=1e05). For more information
regarding the other function arguments type ?spatFilt.bms.

> dataM = as.matrix(apply(dataBoston, 2, as.numeric))

> model1 = spatFilt.bms(X.data = dataM, WList = WL.boston,

+ burn = 1e+05, iter = 1e+06, nmodel = 100, mcmc = "bd",

+ g = "bric", mprior = "random", mprior.size = (ncol(dataM) -

+ 1)/2)

The object model1 is a standard BMS object. It is important, to note that all the reported
statistics (Posterior Inclusion Probabilities, Posterior Means, Posterior Standard deviations,
etc.) are after having integrated out uncertainty with respect to W.
To fix ideas, we will look at the disaggregated results to - for example - assess whether a
variable receives only posterior support under a particular weight matrix or to look at the
posterior inclusion probabilites of the spatial weight matrices, first:

> model1$wTopModels[, 1:3]
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08beb0 08b6b0 08feb0

CRIM 1.0000000 1.0000000 1.00000000

ZN 0.0000000 0.0000000 0.00000000

INDUS 0.0000000 0.0000000 0.00000000

CHAS 0.0000000 0.0000000 0.00000000

AGE 1.0000000 1.0000000 1.00000000

DIS 0.0000000 0.0000000 1.00000000

RAD 1.0000000 1.0000000 1.00000000

TAX 1.0000000 1.0000000 1.00000000

PTRATIO 1.0000000 0.0000000 1.00000000

B 1.0000000 1.0000000 1.00000000

LSTAT 1.0000000 1.0000000 1.00000000

NOX 0.0000000 0.0000000 0.00000000

RM 1.0000000 1.0000000 1.00000000

NOX#NOX 0.0000000 0.0000000 0.00000000

RM#RM 1.0000000 1.0000000 1.00000000

W-Index 1.0000000 1.0000000 1.00000000

PMP (Exact) 0.4700282 0.1026632 0.04539982

PMP (MCMC) 0.4697333 0.1020738 0.04491770

In the example we show posterior results for the first 3 models. The line W-Index tells you
which W has been included in the particular model. In our example the W-Index indicates
that the first weight matrix in WL.boston (i.e. W0=’boston.soi’) has been used in the first
3 regression models.
On the contrary,

> topmodels.bma(model1)[, 1:3]

45f5 45b5 47f5

CRIM 1.000000 1.0000000 1.00000000

ZN 0.000000 0.0000000 0.00000000

INDUS 0.000000 0.0000000 0.00000000

CHAS 0.000000 0.0000000 0.00000000

AGE 1.000000 1.0000000 1.00000000

DIS 0.000000 0.0000000 1.00000000

RAD 1.000000 1.0000000 1.00000000

TAX 1.000000 1.0000000 1.00000000

PTRATIO 1.000000 0.0000000 1.00000000

B 1.000000 1.0000000 1.00000000

LSTAT 1.000000 1.0000000 1.00000000

NOX 0.000000 0.0000000 0.00000000

RM 1.000000 1.0000000 1.00000000

NOX#NOX 0.000000 0.0000000 0.00000000

RM#RM 1.000000 1.0000000 1.00000000

PMP (Exact) 0.465327 0.1056594 0.04672478

PMP (MCMC) 0.463265 0.0999770 0.04399500
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shows the aggregated results: a matrix of containing the best models along with the according
posterior model probabilities (exact and frequencies) after integrating out uncertainty with
respect to the weight matrices. That is, if the first two models would be the same in terms
of explanatory variables but differ regarding the employed weight matrix, the posterior mass
of the two models is aggregated.

> estimates.bma(model1)

PIP Post Mean Post SD Cond.Pos.Sign Idx

B 1.000000 5.663505e-04 9.677783e-05 1.00000000 10

LSTAT 1.000000 -1.794412e-01 1.950956e-02 0.00000000 11

RM#RM 1.000000 3.755998e-02 6.808795e-03 1.00000000 15

CRIM 0.999998 -4.484651e-03 8.451294e-04 0.00000000 1

RM 0.997432 -3.609266e-01 8.760509e-02 0.00000000 13

AGE 0.991173 -1.486851e-03 4.072440e-04 0.00000000 5

RAD 0.971146 6.086177e-02 1.943944e-02 1.00000000 7

TAX 0.942929 -2.718209e-04 1.059824e-04 0.00000000 8

PTRATIO 0.834085 -1.116339e-02 6.475768e-03 0.00000000 9

DIS 0.103370 -3.949460e-03 1.905292e-02 0.00612363 6

CHAS 0.091694 -1.447677e-03 8.525083e-03 0.00000000 4

NOX#NOX 0.085756 -8.045612e-03 9.180505e-02 0.02459303 14

NOX 0.080450 2.298915e-03 1.166256e-01 0.21758856 12

ZN 0.078457 4.273656e-06 1.117140e-04 0.81679136 2

INDUS 0.077824 -4.533138e-05 5.910705e-04 0.06576377 3

In the same vein, the posterior inclusion probability (PIP) for the variable RM for example
corresponds to the sum of the posterior model probabilities of all regression models including
that variable and the posterior mean is calculated as the weighted (by posterior model
probabilities) average of posterior means over all weight matrices. Also note that the prior
over the W space is uniform. Other forms of (informative) priors might be implemented in
a later version of the computer code.
Coming back to the disaggregated (W-specific) results. To calculate the posterior inclusion
probabilities of the W matrices, you can look a the frequency with which each W matrix
has been visited by the sampler and express this in percentages:

> model1$Wcount

Col0 Col1 Col2 knn4 knn6

992117 3950 3933 0 0

> model1$Wcount/sum(model1$Wcount) * 100

Col0 Col1 Col2 knn4 knn6

99.2117 0.3950 0.3933 0.0000 0.0000

In the example, the original ’boston.soi’ W matrix along with its perturbations receives over-
whelming posterior support, whereas the k-nn matrices cannot explain the spatial patterns
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present in the data. If you prefer statistics based on the best models (in the example we
have set nmodel=100 meaning that results are based on a maximum of 100 models receiving
highest posterior support in terms of posterior model probabilities), you can use the function
pmpW.bma:

> pmpW.bma(model1)

PMP (Exact) PMP (MCMC)

Col0 99.5443044 99.5574083

Col2 0.2278478 0.2210406

Col1 0.2278478 0.2215511

knn4 0.0000000 0.0000000

knn6 0.0000000 0.0000000

Usually model1$Wcount gives you a reasonable approximation and is directly accessible from
the model1 object.
We finally want to check whether there is remaining spatial autocorrelation present in the
residuals. For that purpose we can use the ’Moran’s I’ test calling lm.morantest for the best
models. Although - in order to save time - we could have a look at the 10 best models only
(in the example the first 10 models already account for more than 80% of posterior mass) we
carry out the residual test for all models in order to get more accurate results. The function
mTest is wrapper for the function lm.morantest provided in the package spdep. The loop
re-computes the nmodel best - in terms of posterior model probabilities - regressions in order
to get an object of class lm and finally applies the lm.morantest.
We do this once for the eigenvector augmented regressions (the spatial filtering approach)
and once in a pure OLS fashion by setting the option variants="double":

> mTest = moranTest.bma(object = model1, variants = "double",

+ W = nb2listw(boston.soi), nmodel = 100)

This allows us for a direct comparison of a non-spatial regression approach and the spatial
filtering BMA approach pursued in this article. If the non-spatial linear regression models
do not show any patterns of spatial residual autocorrelation a standard BMA regression -
as with the function bms - dealing solely with uncertainty with respect to the explanatory
variables might be preferable.
We now extract the corresponding p-values (remember the null hypothesis corresponds to
no spatial autocorrelation):

> pvalueMat = cbind(sapply(mTest$moran, function(x) x$p.value),

+ sapply(mTest$moranEV, function(x) x$p.value))

Figure 1 shows the distribution of the p-values of the ’Moran’s I’ test, once for pure OLS
regressions (without any spatial correction, left panel) and once augmented with the eigen-
vectors identified by the spatial filtering algorithm (right panel).
To sum up by incorporating the eigenvectors we successfully removed spatial residual au-
tocorrelation from the regressions. The BMA framework helped us to explicitely deal with
uncertainty stemming from the construction of the weight matrices and allowed us to get
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Figure 1: Distribution of p-values of a Moran’s I test for spatial residual autocorrelation.
Left panel shows the results for the 100 best models based on OLS regressions. Right panel
includes on top of the explanatory variables the eigenvectors identified by the spatial filtering
algorithm.

posterior inclusion probabilities of weighting matrices as well as the usual BMA statistics
dealing with spatial correlation. Finally, once again please note that all functions of the BMA
package ’BMS’ are fully applicable to its spatial filtering variant. The remainder of this il-
lustration shows posterior plots to assess convergence of the MCMC sampler, the posterior
distribution of coefficients of interest, an image plot as well as a plot of the posterior model
size. You can also type spatBMS.demo to get a short demonstration of spatFilt.bms’s main
functions.
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Figure 2: The top panel shows the posterior distribution of the model size indicating that a
model explaining house prices contains on bottom panel a convergence plot. The correlation
of > 0.99 indicates excellent convergence of the MCMC algorithm.

11



−0.007 −0.005 −0.003 −0.001

0
10

0
20

0
30

0
40

0
Marginal Density: CRIM (PIP 100 %)

Coefficient

D
en

si
ty

Cond. EV
2x Cond. SD
Median

Model Inclusion Based on Best  94  Models

Cumulative Model Probabilities

0 0.46 0.56 0.65 0.72 0.79 0.86 0.93

ZN

NOX

INDUS

NOX#NOX

CHAS

DIS

PTRATIO

TAX

RAD

AGE

RM

RM#RM

LSTAT

B

CRIM

Figure 3: Top panel shows the posterior distribution of the coefficient ’CRIM’, bottom panel
shows an ’image’ plot. The first plot indicates the negative relationship between the crime
rate and house prices. The second plot illustrates the posterior inclusions probabilities and
the signs (red = positive, blue = negative) of the employed regressors. The x-axis also
indicates how dense the posterior model probabilities are distributed.
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